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Abstract
In this paper we study process-level large deviations for spin-flip particle
systems and more general Markov processes. We prove that a modification
of a well known Donsker–Varadhan entropy function can be used to govern the
large deviation lower bounds for any such process starting from a class of initial
distributions related to an extremal invariant measure of the process. In some
specific cases, we obtain the full large deviation principle.

PACS numbers: 0250G, 0250F, 0550, 4550

1. Introduction

By interacting particle systems (IPS) we refer to models which describe systems consisting of
a large number of individuals, such as microscopic particles, that stochastically interact with
each other. For such a system, one of the most important problems is to study its long-time
behaviour, including its asymptotic stability and fluctuation around its stable states. Such a
stable state is physically termed an equilibrium, and mathematically described as an invariant
probability measure, or a Markov measure, of a stochastic process. Thus, in a certain sense, the
asymptotic stability can be described by convergence to such a measure of the system. More
precisely, if we denote by ν such an invariant measure, Pν the corresponding Markov measure,
Lt and Rt the empirical measure and the process of the system up to time t respectively (all
to be formally defined later), then starting from certain initial configurations, Lt ⇒ ν and
Rt ⇒ Pν respectively, as t → ∞, where ⇒ denotes the weak convergence of probability
measures. That is, if η is such an initial configuration, Pη is the corresponding distribution law
of the system, then informally we have

Pη(Lt ∼ ν) ∼ 1 and Pη(Rt ∼ Pν) ∼ 1

where by ‘∼’ we mean ‘close’. Hence if G and O are neighbourhoods of ν and Pν respectively,
then the probabilities for large fluctuation Pη(Lt �∈ G) and Pη(Rt �∈ O) go to 0 as t → ∞.
Now, for what η will these statements hold and how fast will the fluctuation probabilities go
to 0? There are various reasons for considering these problems from different points of view.
For example, from the point of view of physics, or from the point of view of ergodic theory,
for each equilibrium state, one would like to have knowledge about its domain of attraction,
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and the metastability of the system before it becomes close to this state. Statistically, one also
needs to know starting from what initial points the empirical quantities will converge to an
unknown invariant measure and to know the convergence rate, so as to make an estimation
of this unknown measure and give the error probability as explicitly as possible. The large
deviation (LD) technique is important for studying these problems. Notably, a full large
deviation principle (LDP) will give rise to a series of further interesting consequences, including
the variational representation of Laplacian integrals, that is,

lim
t→∞

1

t
log

∫
exp{t�(Lt)} dPη = sup

[ ∫
� dµ − I (µ)

]
and

lim
t→∞

1

t
log

∫
exp{t�(Rt)} dPη = sup

[ ∫
� dQ − H(Q)

]
where I and H are the LD rate functions for Lt and Rt respectively, and the two sup’s are taken
over the space of probability measures on the space of configurations and on the path space of
the system respectively. Obviously, these are important both in mathematics and physics, since
the pressure functional of a particle system can be represented as certain Laplacian integrals.

In this paper we consider the LD problem for a class of well studied IPS–spin-flip systems.
In [1–5] LDs for space–time empirical processes of spin-flip particle systems were studied.
The corresponding rate functions H0 are shown to satisfy a certain variational principle, i.e.,
H0(Q) = 0 iff Q is a stationary Markov measure corresponding to the spin system under
consideration. Applications of the results to ergodicity were also discussed. From the point
of view of ergodic behaviour, a natural and reasonable question is: does one have a LDP for
the usual time empirical processes? Presently there are few results in this direction. The study
turns out to be very complicated due to the infiniteness of the number of particles and their
interactions. In the space–time cases, a spin system has a certain local space–time Gibbsian
structure, which reduces the LD study to that for a non-interacting system and the control of a
certain type of Girsanov transformation. This is one of the standard techniques used in studying
the LDP. In the cases of time empirical processes, we do not know how to use this technique. A
powerful technique for studying the LD of time empirical processes was introduced by Donsker
and Varadhan (DV) (cf [6]), which provides upper bounds for very general Markov processes.
As for lower bounds, some conditions on the transition probabilities were imposed. Jain [7]
also provided some results for the lower bounds. Some essential conditions needed in [6]
or [7] were certain irreducibility or strong ergodicity of the processes; which is reasonable.
However, it is generally difficult to verify any of these conditions for an interacting infinite
particle system. Nevertheless, their techniques can be modified to study LDs for systems
starting ‘near’ extremal invariant measures of the systems. The content of this paper is as
follows. We will obtain LD lower bounds governed by a modified DV entropy function. In
some specific cases, this modified entropy function coincides with the exact DV one, so we
obtain a full LDP. Since our approach applies to more general Markov processes, we give our
results in a more general setting and take spin-flip systems as examples.

We first introduce some general notations. Let E be a Polish space, M1(E) be the space
of all probability measures on E, equipped with the weak topology. � = D(R,E) and
�+ = D([0,∞), E)denote the spaces of cadlag functions fromR and [0,∞) toE, respectively,
both equipped with the Skorohod topology and the Borel σ -algebra. Let {Px, x ∈ E} be a
Markov family of probability measures of a time-homogeneous Markov process on �+, with
Px being weakly continuous in x. {S(t), t � 0} denotes the semigroup of the process, Ms(E)

the set of invariant probability measures of the semigroup, and Me
s (E) the set of the extremal

elements in Ms(E). For µ ∈ M1(E), Pµ = ∫
Pxµ(dx). For −∞ � s � t � ∞, denote
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F t
s = σ {ωu, s � u � t}, Ft ≡ F t

0. Ms(�+) is the set of stationary probability measures on
�+, equipped with the weak topology. Now we define the empirical processes. For ω ∈ �+

and t > 0, let ωt be the t-periodic element of ω defined by (ωt )s+nt = ωs for 0 � s < t and
n ∈ Z+. Then define

Rt = Rt(ω) = 1

t

∫ t

0
δθuωt du

where θu is the shift operator on �+ given by (θuω)t = ωt+u, δω is the usual Dirac measure
centred at ω. Then Rt ∈ Ms(�+). We want to study LD for {Pµ(Rt ∈ ·), t > 0}. In [6] one
can find the following uniform upper bounds for general Markov processes:

lim sup
t→∞

1

t
log sup

x∈E
Px(Rt ∈ F) � − inf

Q∈F
H(Q) for compact F (1.1)

where H is the DV entropy function defined by H(Q) = EQ log( dQω

dPω0
|F1), and Qω =

Q(·/F0
−∞)(ω). It has been proved that H possesses good properties: H is affine with

compact level sets, i.e., for Qi ∈ Ms(E) and λi � 0, i = 1, . . . , k, with
∑k

i=1 λi = 1,
H(
∑k

i=1 λiQi) = ∑k
i=1 λiH(Qi), and for any a � 0, {H(Q) � a} is compact in Ms(�+).

Furthermore, under certain exponential tightness, (1.1) holds for every closed F . In particular,
if E is compact, then H governs the LD upper bounds. In this paper, we will study the associate
LD lower bounds, i.e., for open G ⊂ Ms(�+),

lim inf
t→∞

1

t
logPµ(Rt ∈ G) � − inf

Q∈G
H(Q). (1.2)

In [6, 7] one finds some conditions for (1.2) to hold. But for an interacting infinite particle
system, we do not know how to check when these conditions are satisfied. Consequently, we
will modify the entropy function H and restrict the initial distributions to an important and
interesting class which is intimately related to Me

s (E). For Q ∈ Ms(�+), let µQ be its single
time marginal. Given ν ∈ Ms(E), let M⊥

ν (E) be the set of measures in Ms(E) that are singular
w.r.t. ν. Then define

Hν,0(Q) =
{

+∞ if µQ ∈ M⊥
ν (E)

H(Q) otherwise

and then define its lower semicontinuous version by Hν(Q) = limδ→0 infd(Q,Q′)<δ Hν,0(Q
′),

where d(·, ·) is any metric on Ms(�+) which generates the weak topology. The main result of
this paper is the following:

Theorem 1.1. Under the above notations,

(1) For each ν ∈ Ms(E), Hν has compact level sets.
(2) If ν is in Me

s (E), then for ν almost all x, for each open G ⊂ Ms(�+),

lim inf
t→∞

1

t
logPx(Rt ∈ G) � − inf

Q∈G
Hν(Q). (1.3)

(3) Let ν ∈ Me
s (E). For µ ∈ Ms(E), if there is a T � 0 such that µT ≡ µS(T ) �∈ M⊥

ν (E),
then (1.3) holds with Px replaced by Pµ, where the measure µS(T ) ∈ M1(E) is defined by∫
f dµS(T ) = ∫

S(T )f dµ for f ∈ Cb(E). In particular, (1.3) holds with Px replaced
by Pν .

Remark 1. From the definition of Hν we know that if H(Q) < ∞ implies µQ �∈ M⊥
ν (E),

then Hν = H , and hence (1.1) and theorem 1.1 give the full LDP.

The theorem will be proved in section 2. In section 3, we make some further discussion,
including applications of our theorem to particle systems and comparison of our results with
that obtained in [4, 5].



1606 J W Chen

2. Proof of theorem 1.1

The proof of conclusion (1) is simple, we only need to use the definition of Hν and the
compactness of the level sets of H .

Now we prove conclusion (2). In addition, by the definition of Hν we see that we only
need to prove that for ν ∈ Me

s (E), if Q ∈ Ms(�+) satisfies H(Q) = Hν,0(Q) < ∞ and G is
an open set containing Q, then for ν almost all x,

lim inf
t→∞

1

t
logPx(Rt ∈ G) � −H(Q). (2.1)

The main ingredient of its proof is contained in several lemmas. To prove them, we need the
following lemma which was proved in [6].

Lemma 2.0. Define φ(t, ω) = log( dQω

dPω0
|Ft

) and Ht(Q) = EQφ(t, ω). If H(Q) < ∞, then

Ht(Q) = tH(Q) for t > 0 and H(Q) = limt→∞ φ(t,ω)

t
Q — a.s.

The following lemma is a consequence of the well known ergodic theorem.

Lemma 2.1. If ν ∈ Me
s (E) and µ ∈ M1(E) with µ �∈ M⊥

ν (E), then for every bounded
measurable function f on E, there is a constant c > 0 such that

lim inf
t→∞

1

t

∫ t

0
EPµf (ωu) du � cν(f ).

In particular, if µ � ν, then

lim
t→∞

1

t

∫ t

0
f (ωu) du = ν(f ) Pµ — a.s.

Proof. Since ν ∈ Me
s (E), it follows that Pν is ergodic, see, e.g., [9, theorem B52]. Hence for

bounded f on E, there is E0 ⊂ E with ν(E0) = 1, such that ∀x ∈ E0,

lim
t→∞

1

t

∫ t

0
f (ωu) du = ν(f ) Px — a.s.

Note that if µ � ν, then µ(E0) = 1, and we obtain the second conclusion of the lemma. For
the first one we have

lim inf
t→∞

1

t

∫ t

0
EPµf (ωu) du � lim inf

t→∞

∫
E0

µ (dx)EPx
1

t

∫ t

0
f (ωu) du

�
∫
E0

µ (dx) lim inf
t→∞ EPx

1

t

∫ t

0
f (ωu) du

= µ(E0)ν(f )

If µ �∈ M⊥
ν (E), then ν(E0) = 1 implies µ(E0) > 0, the desired conclusion follows. �

Lemma 2.2. Let ν ∈ Me
s (E), Q ∈ Ms(�+) be ergodic with H(Q) < ∞ and µQ �∈ M⊥

ν (E),
G an open set containing Q, A measurable on E with ν(A) > 0. Then for fixed ε > 0 and
σ > 0, there exists T > 0 such that ∀δ > 0 there exists measurable A0 with µQ(A0) > 1 − δ,
such that

lim inf
t→∞

1

t
log inf

x∈A0

1

σ t

∫ σ t

0
du

1

T

∫ T

0
dv Px(Rt ∈ G,ωt+u+v ∈ A) � −H(Q) − ε.
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Proof. For ω ∈ �+, by the Markov property we have

2(t, T , ω0) ≡ 1

σ t

∫ σ t

0
du

1

T

∫ T

0
dv Pω0(Rt ∈ G, ω′

t+u+v ∈ A)

=
∫
Rt∈G

1

σ t

∫ σ t

0

[
1

T

∫ T

0
Pω′

t+u
(ω′′

v ∈ A) dv

]
du dPω0

=
∫
Rt∈G

1

σ t

∫ t+σ t

t

gT (ω
′
u) du dPω0

� cν(A)

2
exp

{
−t
[
H(Q) +

ε

2

]}
Qω(4t) (2.2)

where gT (η) ≡ 1
T

∫ T

0 Pη(ωv ∈ A) dv and

4t ≡
{
Rt ∈ G, log

(
dQω

dPω0

∣∣∣∣
Ft

)
� t

[
H(Q) +

ε

2

]
,

1

σ t

∫ t+σ t

t

gT (ωu) du � cν(A)

2

}
.

By the ergodicity of Q we know that

lim
t→∞

1

σ t

∫ σ t

0
gT (ωu) du = 1

T

∫ T

0
PµQ

(ωv ∈ A) dv Q — a.s.

Furthermore, since ν ∈ Me
s (E) and µQ �∈ M⊥

ν (E), from lemma 2.1 we see that for some
c > 0, if T is sufficiently large, then

1

T

∫ T

0
PµQ

(ωv ∈ A) dv >
cν(A)

2
.

Combining this with (2.2), the stationarity and ergodicity of Q and lemma 2.0 we see that
limt→∞ Qω(4t) = 1 Q—a.s. and hence for µQ almost all x:

lim inf
t→∞

1

t
log2(t, T , x) � −H(Q) − ε

2
.

The desired inequality easily follows from this. �

Lemma 2.3. Let ν ∈ Me
s (E),Q = ∑k

i=1 λiQi with Qi ergodic, H(Qi) < ∞, µi ≡ µQi
�∈

M⊥
ν (E), λi > 0 and

∑k
i=1 λi = 1, G be an open set containing Q. Then for ν almost all

x, (2.1) holds.

Proof. For simplicity, we only consider the case k = 3, the general cases can be treated in
the same way. Fix ε > 0. Choose the neighbourhood Gi of Qi(1 � i � 3) and t0 > 0 such
that if Q′

i ∈ Gi and ||Q′′
i − Q′

i ||Ft0
is sufficiently small for 1 � i � 3, then

∑3
i=1 λiQ

′′
i ∈ G,

where || · ||Ft0
denotes the total variation norm of probability measures restricted on Ft0 . Write

ti = λit . Then we can choose sufficiently small σ > 0, such that for sufficiently large t and
measurable Ai with µi(Ai) ≡ µQi

(Ai) > 0 (1 � i � 3) (to be chosen later), we have for
x ∈ E

Px(Rt ∈ G) � 1

σ t1

∫ σ t1

0
du

1

σ t1

∫ σ t1

0
du1

1

T

∫ T

0
dv1

1

σ t2

∫ σ t2

0
du2

× 1

T

∫ T

0
dv2 Px

(
Rt1(θuω) ∈ G1, ωu+t1+u1+v1 ∈ A2, Rt2(θu+t1+u1+v1ω) ∈ G2,

ωu+t1+u1+v1+t2+u2+v2 ∈ A3, Rt3(θu+t1+u1+v1+t2+u2+v2ω) ∈ G3
)
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� [ inf
r∈A3

Pr(Rt3 ∈ G3)]
1

σ t1

∫ σ t1

0
du

1

σ t1

∫ σ t1

0
du1

1

T

∫ T

0
dv1

1

σ t2

∫ σ t2

0
du2

× 1

T

∫ T

0
dv2 Px

(
Rt1(θuω) ∈ G1, ωu+t1+u1+v1 ∈ A2,

Rt2(θu+t1+u1+v1ω) ∈ G2, ωu+t1+u1+v1+t2+u2+v2 ∈ A3
)

� 41,t

[
inf
y∈A2

1

σ t2

∫ σ t2

0
du2

1

T

∫ T

0
dv2 Py(Rt2 ∈ G2, ωt2+u2+v2 ∈ A3)

]
1

σ t1

×
∫ σ t1

0
du

1

σ t1

∫ σ t1

0
du1

1

T

∫ T

0
dv1 Px(Rt1(θuω) ∈ G1, ωu+t1+u1+v1 ∈ A2)

� 41,t42,t

[
inf
z∈A1

1

σ t1

∫ σ t1

0
du1

1

T

∫ T

0
dv1 Pz(Rt1 ∈ G1, ωt1+u1+v1 ∈ A2)

]

× 1

σ t1

∫ σ t1

0
Px(ωu ∈ A1) du (2.3)

where

41,t = inf
r∈A3

Pr(Rt3 ∈ G3)

42,t = inf
y∈A2

1

σ t2

∫ σ t2

0
du2

1

T

∫ T

0
dv2 Py(Rt2 ∈ G2, ωt2+u2+v2 ∈ A3)

and denote

43,t = inf
z∈A1

1

σ t1

∫ σ t1

0
du1

1

T

∫ T

0
dv1 Pz(Rt1 ∈ G1, ωt1+u1+v1 ∈ A2).

By lemma 2.2 and the assumption that µ3 �∈ M⊥
ν (E), we first choose A3 with µ3(A3) close to

1, such that ν(A3) > 0 and

lim inf
t→∞

1

t 3
log41,t � −H(Q3) − ε.

Then we can apply lemma 2.2 again to choose A2 with µ2(A2) close to 1, such that ν(A2) > 0
and

lim inf
t→∞

1

t 2
log42,t � −H(Q2) − ε.

In the same way we can choose A1 with ν(A1) > 0, such that

lim inf
t→∞

1

t 1
log43,t � −H(Q1) − ε.

Furthermore, since ν(A1) > 0, from lemma 2.1 we know that for ν almost all x,

1

σ t1

∫ σ t1

0
Px(ωu ∈ A1) du >

ν(A1)

2

for sufficiently large t . Combining these with (2.3) we obtain (2.1). �

Now a standard argument shows that (2.1) holds for general Q with Hν,0(Q) = H(Q) <

∞, completing the proof of conclusion (2) of theorem 1.1.
To prove conclusion (3), we note that for µT = µS(T ), we can find neighbourhood

G1 ⊂ G of Q such that for sufficiently large t ,

Pµ(Rt ∈ G) � Pµ(Rt−T (θT ω) ∈ G1) = PµT
(Rt−T ∈ G1).
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Consequently, without loss of generality we can assume µ �∈ M⊥
ν (E). Then the proof of (3)

is the same as that of (2), only in the last step we replace Px by Pµ and apply lemma 2.1 to
obtain that for some c > 0 and every large t

1

σ t1

∫ σ t1

0
Pµ(ωu ∈ A1) du � cν(A1).

3. Further discussion

In this section we first briefly discuss the application of theorem 1.1 to spin-flip systems. By
such a system we refer to a Feller–Markov process {Px, x ∈ E} on �+ = D([0,∞), E) with
E = {0, 1}Zd

, determined by a family of spin-flip rates {c(i, ·), i ∈ Zd}, where for each i, c(i, ·)
is a non-negative continuous function on E satisfying certain conditions (cf [8, chapter 3]).
As we have already stated, to obtain a full LDP, a sufficient condition is that H(Q) < ∞
implies µQ �∈ M⊥

ν (E). In some cases where there is certain strong ergodicity, we indeed have
a stronger implication, i.e., H(Q) < ∞ implies µQ � ν, where ν is the unique invariant
probability measure of the system. Hence H = Hν and we have a full LDP under Pν or under
Px for ν almost all x. For a simple example in this direction, we consider a spin-flip system
{Px, x ∈ E0} with strictly positive interactions, where E0 ≡ {x ∈ E,

∑
i∈Zd x(i) < ∞}.

More precisely, we assume that for each i ∈ Zd , c(i, η) > 0 if η ∈ E0; = 0 otherwise.
Then {Px, x ∈ E0} is in fact a continuous-time irreducible Markov chain on E0. If this chain
is ergodic, then every probability measure on E is absolutely continuous w.r.t. the unique
invariant probability measure ν of the system.

An example of infinite system, along these lines, is the case when c(i, ·) ≡ 1 ∀i ∈ Zd .
This is a non-interacting system. If we denote by ν the product probability measure on E with
marginal density 1/2, then it can be shown that H(Q) < ∞, hence I (µQ) < ∞, implies
µQ � ν, where for µ ∈ M1(E), I (µ) ≡ inf{H(Q),µQ = µ}.

A non-trivial example of interacting infinite system is the one-dimensional stochastic Ising
model with finite range potentials. It can be shown that if ν is the unique Gibbs state, then
H(Q) < ∞ implies µQ � ν. For this model, it has been known that under Pν, the occupation
times of the system satisfies a full LDP. Our theorem 1.1 means that the empirical processes,
and hence the empirical measures, satisfies a full LDP. This may be the first non-trivial LDP
result for empirical processes of spin-flip systems.

As one can see, theorem 1.1 should be more applicable for ergodic systems. For example,
if a system has a unique invariant probability measure ν and for every initial measure µ,
limt→∞ µS(t) = ν in the τ -topology, then a slight modification of the proof of theorem 1.1
shows that (2.3) holds.

Now we make a comparison of our time empirical LD process with the space–time
empirical LD process studied in [4, 5]. There are at least three negligible differences we see
between the two: (a) the space–time empirical processes are both time stationary and space
translation invariant. Thus the corresponding LD rate functions were used to characterize the
Markov measures of the system that are space translation invariant, whereas the time empirical
LD process can be used to describe all Markov measures of the system. (b) The respective
LD rate functions may have quite different features. For example, as we discussed at the
beginning of this section, for some strong ergodic system, H(Q) < ∞ implies µQ � ν.
However, even for the same system, one may have H0(Q) < ∞ but µQ is singular w.r.t. ν,
where H0 is the space–time LD rate function. The non-interacting system we discussed in
the second paragraph of this section is such an example. (c) As we stated in section 1, the
technique used in [4,5] heavily relies on the space–time local Gibbsian structure of the system
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and requires the spin-flip rates to be strictly positive. Our results may apply to systems with
possibly vanishing spin-flip rates: what we need to do is to check that H(Q) < ∞ implies
that µQ is not singular w.r.t. ν, and we think this should not be too restrictive.
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